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1 Introduction

This paper analyzes the implications of asymmetric information in a labor market with

search frictions. A worker and firm agree upon an employment contract in an environment

with symmetric information. Afterwards, the firm observes the worker’s match-specific pro-

ductivity x, but the worker continues to know only the underlying productivity distribution

F (x). Depending on the incentives generated by the employment contract and any informa-

tion that the firm chooses to reveal to the worker, the employment contract then dictates the

probability that the worker is employed and the wage that she receives if she is employed.

If the worker is employed, she produces x, while otherwise her productivity is normalized to

zero.

This information structure fits naturally into a competitive search model (Moen 1997,

Shimer 1996, Mortensen and Wright 2002). I consider the interaction between a large number

of workers and a large number of firms in a static economy with search frictions. Firms

compete for workers by advertising an employment contract, which in general says “if you

contact me and I tell you that your productivity is x, I will hire you with probability e(x)

and transfer you t(x) regardless of whether I employ you.” Each worker looks at the menu of
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supported financially by grants from the National Science Foundation and the Sloan Foundation.
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available employment contracts, computes the probability that she will succeed in contacting

a firm offering that contract, evaluates the reporting strategy that a firm offering a particular

contract will use, and decides where to apply for a job. In particular, workers recognize that

if the ratio of firms offering some contract to workers seeking that contract θ is very high,

the probability of contacting a such a firm µ(θ) will be higher. From the firm’s perspective,

it is easier to contact a worker when the ratio of firms offering to workers seeking a contract

is low, so µ(θ)/θ is a decreasing function.

Alternatively, following Mortensen and Wright (2002), this can be reinterpreted as an

environment with a competitive sector of ‘market makers’. A market maker announces that

if a firm wants to enter his market, it must commit to a particular employment contract

and pay the market maker a nonnegative entry fee; and if a worker wants to enter his

market, the worker must agree to accept the same employment contract and pay the market

maker a nonnegative entry fee. Within the market, there is random matching, so if θ is

the firm-worker ratio, a worker contacts a firm with probability µ(θ) and a firm contacts

a worker with probability µ(θ)/θ. Market makers compete by choosing the ‘best’ possible

employment contract and by lowering the required entry fees. In equilibrium, competition

drives the entry fees, and hence the market makers’ profit, to zero, while market makers

select the same contract that firms choose in the contracting-posting game described above.

A third isomorphic possibility is that workers select and advertise contracts in an effort to

attract potential employers.

In all three environments, there is a critical contracting problem: how is an employment

contract best structured so as to exploit all the possible gains from trade given the constraints

imposed by asymmetric information? If there are no restrictions on the menu of feasible

contracts, the answer is simple. A firm must transfer t to any worker it contacts and employ

the worker if her productivity exceeds her outside option of zero. Such a contract is incentive

compatible and ensures that the firm employs the worker whenever doing so is bilaterally

efficient. Moreover, by varying the transfer t, any division of the surplus generated by a

match is feasible.

To make the asymmetric information problem interesting, I introduce an additional re-

striction on employment contracts: a firm always has the option of announcing that the

worker’s productivity is zero, in which event the contract specifies a zero transfer, t(0) = 0.

I interpret this as an adverse selection problem. More precisely, there is a small number of

unproductive workers who always produce 0. If t(0) were positive in a single sub-market

and zero in all others, that market would attract all the unproductive workers, making it
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unattractive both for firms (who would be less likely to find a productive agent) and workers

(who would be less likely to find a firm). Therefore competition drives t(0) to zero in all

open markets.

This single restriction has a profound effect on the nature of optimal contracts. Under

a plausible condition on the productivity distribution F ,1 the best contract is perhaps the

simplest mechanism that one could imagine: the firm promises to hire the worker and pay her

w if x ≥ w and otherwise promises not to hire the worker and to pay her zero. Equivalently,

one can think of this as a simple fixed wage contract, where the firm sets the wage w before

observing the workers’ productivity and then has the right to determine whether to employ

the worker.

More generally, the best contract can have a slightly more complicated characterization:

the contract specifies two wages w1 < w2 and a probability π ∈ (0, 1). When a worker and

firm meet, the firm randomly (but publicly) selects a wage, choosing w1 with probability π

and w2 otherwise. It then observes both the wage and the worker’s productivity and decides

whether to hire her at the selected wage or not to hire her and pay her nothing. There is no

other contract, no matter how complex, that does better in a competitive search equilibrium

with asymmetric information.

To my knowledge, only Faig and Jerez (2004) have previously examined a competitive

search model with asymmetric information. That paper is much more ambitious than this

one, in that the authors build a quantifiable theory of commerce, while I focus on the simplest

possible model of search and asymmetric information. This allows me to generalize Faig and

Jerez’s (2004) findings along some dimensions. In particular, those authors assume that the

distribution of productivity F takes a particular functional form (uniform on [0, 1]), while I

allow for a general distribution, and those authors restrict attention to mechanisms that use

pure strategies, while I allow for public randomization. The latter assumption is critical for

my results, since if public randomization were impermissible, i.e. the employment probability

e(x) were restricted to be either zero or one, it is easy to show that any incentive compatible

contract would simply impose employment above some threshold w at a wage of w.

Most previous authors who have examined asymmetric information in search models have

presumed that wages are determined by a particular bargaining procedure. For example,

Trejos (1999) examines a monetary model of exchange with asymmetric information. The

structure of the bargaining game follows Rubinstein (1982): nature randomly selects one

party to make an offer to the other; if the offer is rejected, there is a short delay before the

1The condition is that xF ′(x)
1−F (x) is nondecreasing.
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random selection procedure is repeated. Trejos (1999) shows that the equilibrium of this

game is equivalent to the axiomatic Nash bargaining solution in a model with symmetric

information. In particular, all the bilateral gains from trade are exploited. Berentsen and

Rocheteau (2003) extend Trejos by allowing for divisible money and divisible goods; however,

they maintain his focus on the axiomatic Nash bargaining solution of the related symmetric

information model.

The labor economics literature has focused on inefficiencies that may arise in the presence

of asymmetric information. Acemoglu (1995) assumes that (uninformed) workers make wage

offers to (informed) firms. If an offer is rejected, the worker may make another offer in the

following period. This introduces bilaterally inefficient delay in equilibrium, with a worker

initially demanding a high wage before gradually reducing her wage demand upon deducing

that she is in a low productivity matches. Kennan (2004) and Tawara (2004) allow nature

to randomly select one of the parties to make a take-it-or-leave-it offer to the other party.

If the worker gets to make the offer, she behaves as in Acemoglu (1995), while if the firm

makes the offer, it pays the worker her reservation wage assuming that output exceeds

this low threshold. This superficially resembles the optimal contract, since the worker is

always employed at sufficiently high productivity realizations, is sometimes employed at

intermediate productivity realizations (when the firm makes the offer), and is never employed

at low productivity realizations, below the workers’s reservation wage.2 But despite this, the

two thresholds are never optimal. For example, an optimal contract would dictate that a

worker producing slightly more than her reservation wage should never be employed, while

the particular bargaining game implies that the worker would be employed if the firm makes

the wage offer. This implies that a worker and firm could obtain a Pareto improvement by

agreeing to an employment contract of the sort described here before the firm observes the

match specific productivity realization.

Curtis and Wright (2003) obtain similar results in a model that superficially looks quite

different. They consider a dynamic model in which buyers and sellers meet sequentially.

When they meet, the seller sets a price and the buyer privately observes her idiosyncratic

valuation for the seller’s good. Trade occurs if the buyer’s valuation exceeds the seller’s

price. The authors show that there are generically at most two prices in equilibrium, and

under the same regularity condition as the one developed in this paper, the equilibrium

price is unique. If there are multiple prices, then trade occurs with probability one if the

2Kennan (2004) focuses on parameter values such that all meetings result in matches. Tawara (2004)
considers this more general case.
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buyer realizes a sufficiently high valuation, with an intermediate probability when the buyer

realizes a valuation between the two prices, and with zero probability at a low valuation,

similar to the employment probability function in this paper. But there are three notable

differences between the two papers. First, my analysis works in a static model, while Curtis

and Wright (2003) require a dynamic framework in order to have a two price equilibrium.

Second, I allow sellers (firms) to offer general mechanisms, while Curtis and Wright restrict

firms to offer a single price. Finally, in a competitive search model, each firm must randomly

select a price, while in Curtis and Wright’s (2003) random search model, it is enough that a

fraction of firms offer a low price and the remaining firms offer a high price.

I proceed through the analysis in three stages. Section 2 analyzes a static environment

with just three possible productivity realizations, 0 < x1 < x2. This simple environment

facilitates demonstrating the main forces at work. Section 3 extends this to a continuum of

productivity levels and derives the main characterization of a competitive search equilibrium

with asymmetric information. Section 4 explains why the main results go through in a

dynamic environment.

2 Three Productivity Realizations

2.1 Setup

There are a large number of ex ante identical risk-neutral workers and a large number of risk-

neutral firms. When a worker and firm meet, the pair realize a match-specific productivity

level taking values 0 ≡ x0 < x1 < x2 with probabilities p0, p1, and p2, respectively. The

firm observes xi and the worker does not, although there is common knowledge about the

economic environment.

At the start of the period, firms can create vacancies at cost c. Each vacancy entitles a

firm to post an employment contract. For standard reasons, I restrict attention to incentive

compatible contracts: if a worker contacts the vacancy, the firm announces the productivity

level xi, i ∈ {0, 1, 2}, makes a payment ti ≥ 0, and hires the worker with probability

ei ∈ [0, 1]. Incentive compatibility means that a firm is willing to truthfully reveal its

productivity realization,

eixi − ti ≥ ejxi − tj

for all i and j. In addition, I impose that e0 = t0 = 0, so a worker who produces nothing

is not hired and is paid nothing. There are two possible justifications for this. The first is
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an ad hoc assumption that a firm cannot commit to pay a worker who does not produce

any output, perhaps due to a liquidity constraint. Alternatively, Section 2.3 justifies this as

an equilibrium condition in the presence of a small amount of adverse selection. Note that

when ej > 0, we may reinterpret the transfer as a wage payment wj = tj/ej , with the worker

getting zero income when the match is not consummated.

After firms commit to wage contracts, workers observe all the contracts and decide where

to apply for a job. Workers and firms anticipate that each contract is associated with

a vacancy-unemployment (v-u) ratio θ, and that any worker seeking a firm offering that

contract finds one with probability µ(θ) while any firm offering the contract finds a worker

with probability µ(θ)/θ. In this section, I assume µ(θ) = µ0θ
1−α, α ∈ (0, 1) with µ0 > 0

sufficiently small so that µ(θ) < min{1, θ}. The v-u ratio adjusts so that workers are

indifferent about which contract to seek; let V denote the expected utility for an unemployed

worker, which is constant across contracts.

The competitive search equilibrium can be represented as a tuple {V, θ, t1, t2, e1, e2} that

solves the following constrained optimization problem:

c = max
θ,t1,t2,e1,e2

µ(θ)

θ

(
p1

(
e1x1 − t1

)
+ p2

(
e2x2 − t2

))
subject to µ(θ)

(
p1t1 + p2t2

) ≥ V

e2x2 − t2 ≥ e1x2 − t1

e1x1 − t1 ≥ e2x1 − t2

e2x2 − t2 ≥ 0

e1x1 − t1 ≥ 0

ei ∈ [0, 1]

A firm chooses incentive compatible transfers t1 and t2 and employment probabilities e1 and

e2 in order to maximize its expected profits, taking as given that the v-u ratio θ will adjust

so that a worker seeking this contract receives utility V . Moreover, the maximized level of

profit must equal the sunk cost of a vacancy c. It is mathematically easier to analyze the

dual problem of a worker choosing {θ, t1, t2, e1, e2} in order to maximize her utility, taking

as given that firms earn zero profits and the four incentive compatibility constraints.
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2.2 Characterization

As one might expect, firms always employ workers when a good match is realized:

Lemma 1. e2 = 1.

Proof. Suppose the solution to this problem is a tuple {θ, t1, t2, e1, e2} with e2 < 1. I will

find another tuple {θ′, t1, t2, e′1, e′2} that is both feasible and delivers a higher value of the

objective function.

First, sum the first and second IC constraints to get (e2 − e1)(x2 − x1) ≥ 0, so e2 ≥ e1.

This implies it is feasible to increase both e1 and e2 by equal amounts, say to e′1 = e1−e2 +1

and e′2 = 1. All four IC constraints continue to hold with these new employment probabilities

if the transfers t1 and t2 are left unchanged. Next, the new value of θ is determined from

the free entry condition. Since p1e
′
1x1 + p2e

′
2x2 is larger than p1e1x1 + p2e2x2 and µ(θ)/θ

is a decreasing function, θ′ is also higher than θ. This increases the value of the objective

function.

This simplifies the problem slightly. I can express the dual problem as

V = max
θ,t1,t2,e1

µ(θ)
(
p1t1 + p2t2

)
(1)

subject to c =
µ(θ)

θ

(
p1

(
e1x1 − t1

)
+ p2

(
x2 − t2

))
(2)

x2 − t2 ≥ e1x2 − t1 (IC–1)

e1x1 − t1 ≥ x1 − t2 (IC–2)

x2 − t2 ≥ 0 (IC–3)

e1x1 − t1 ≥ 0 (IC–4)

e1 ∈ [0, 1] (3)

I solve this problem by characterizing the solution in different regions of the parameter

space. I start with the case when x1 and x2 are sufficiently similar so that the incentive

constraints do not affect the solution to the optimization problem.3

3It is incorrect to say that the incentive constraints do not bind. In the absence of an asymmetric infor-
mation problem, only the average transfer p1t1 +p2t2 is determined in equilibrium. Asymmetric information
ensures t1 = t2 since the first two incentive constraints bind. Nevertheless, the incentive constraints do not
affect workers’ expected utility V , the v-u ratio θ, or the employment probability e1.
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Proposition 1. Suppose x2 > x1 ≥ αp2x2

p1(1−α)+p2
. Then e1 = 1,

t1 = t2 =
α(p1x1 + p2x2)

p1 + p2
≤ x1,

and θ solves

(1 − α)µ0θ
−α
(
p1x1 + p2x2

)
= c.

Proof. Consider a modified version of the optimization problem without any incentive con-

straints:

V = max
θ,t1,t2,e1

µ(θ)
(
p1t1 + p2t2

)
subject to c =

µ(θ)

θ

(
p1

(
e1x1 − t1

)
+ p2

(
x2 − t2

))
e1 ∈ [0, 1]

Use the zero profit condition to eliminate µ(θ)(p1t1 + p2t2) from the objective function:

V = max
θ,e1

µ(θ)(p1e1x1 + p2x2) − cθ subject to e1 ∈ [0, 1].

The objective function is increasing in the employment probability e1, and so it is optimal to

set e1 = 1. Then θ satisfies the (necessary and sufficient) first order condition µ′(θ)(p1x1 +

p2x2) = c. With the assumed functional form for µ, this reduces to the desired equation for

θ. Next, use the zero profit condition to compute

p1t1 + p2t2 = p1x1 + p2x2 − c
θ

µ(θ)
=

(
1 − θµ′(θ)

µ(θ)

)
(p1x1 + p2x2),

where the second equality uses the first order condition for θ to eliminate c. Note that

under the functional form assumption for µ, its elasticity is simply 1 − α, so p1t1 + p2t2 =

α(p1x1 + p2x2).

Now examine the incentive constraints (IC–1)–(IC–4). Since e1 = 1, constraints (IC–1)

and (IC–2) imply t1 = t2 = t. Using the previous equation, this implies

t =
α(p1x1 + p2x2)

p1 + p2
.

Constraints (IC–3) and (IC–4) require x2 ≥ t and x1 ≥ t, respectively. Since x2 ≥ x1, the
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proposed tuple solves the original constrained optimization problem if and only if t ≤ x1 or

equivalently x1 ≥ αp2x2

p1(1−α)+p2
.

Next turn to the opposite case, when x1 is much smaller than x2. In this case, the

probability that a bad meeting results in a match, e1, is less than one. This helps to

reduce the incentive for firms to report a bad meeting when the true match quality is good.

Moreover, since the output in a bad meeting is relatively small, the cost of eliminating some

bad matches is also relatively small.

Proposition 2. Suppose αp2x2

p1+p2
> x1 ≥ 0. Then

e1 =
(1 − α)p2x2

p2x2 − (p1 + p2)x1
,

t1 = e1x1, t2 = x2 − e1(x2 − x1), and θ solves

c =
(1 − α)µ0θ

−αp2
2x2(x2 − x1)

p2x2 − (p1 + p2)x1
.

Proof. I characterize the equilibrium when e1 < 1. If incentive constraint (IC–1) were slack,

it would be possible to raise e1 without affecting any of the constraints (IC–1)–(IC–4) or (3).

Then the zero profit condition (2) would permit an increase in θ, raising the value of the

program, a contradiction. Therefore (IC–1) must bind. Next turn to (IC–2). If it binds, then

it and (IC–1) together imply (1 − e1)x2 = t2 − t1 = (1 − e1)x1 or x1 = x2, a contradiction.

So (IC–2) is slack.

Third, look at (IC–4). If it were slack, it would be possible to raise t1 and reduce t2,

leaving the expected transfer p1t1 + p2t2 unchanged. This would relax constraints (IC–1)

and (IC–3), tightening only the non-binding constraint (IC–2). But with (IC–1) slack, the

earlier argument implies it would be possible to raise e1 and increase the value of the program,

a contradiction. Therefore, (IC–4) must bind. Finally, if (IC–3) binds then it, (IC–1),

and (IC–4) imply e1x2 − t1 = 0 = e1x1 − t1, which again implies x1 = x2, a contradiction.
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In summary, when e1 < 1, the optimization problem is

V = max
θ,t1,t2,e1

µ(θ)
(
p1t1 + p2t2

)
subject to c =

µ(θ)

θ

(
p1

(
e1x1 − t1

)
+ p2

(
x2 − t2

))
x2 − t2 = e1x2 − t1

e1x1 = t1

e1 ∈ [0, 1],

with the remaining constraints slack. Use the constraints to eliminate t1, t2, and e1, tem-

porarily suppressing the requirement that e1 ∈ [0, 1]:

V = max
θ
µ(θ)p2x2 −

(
p2x2 − (p1 + p2)x1

)
θc

p2(x2 − x1)
.

The first order condition is

µ′(θ)p2x2 =

(
p2x2 − (p1 + p2)x1

)
c

p2(x2 − x1)
.

Substitute this into the constraints to show

e1 =
(1 − α)p2x2

p2x2 − (p1 + p2)x1

.

The characterization of t1 and t2 follows from the two binding incentive constraints (IC–1)

and (IC–4).

For this solution to be sensible, we require that e1 ∈ [0, 1] or

x1 ≤ αp2x2

p1 + p2
.

Note that when x1 = 0, e1 = 1 − α. It is clear that any lower value of e1 (such as e1 = 0)

would yield the same value of the program in this extreme case.

Finally I turn to the intermediate case, when x1 is too small to permit an unconstrained

optimum but sufficiently large such that all bad matches are consummated. In this case,

firms choose to reduce wages compared to the symmetric information benchmark, which

ensures truthful revelation.
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Proposition 3. Suppose αp2x2

p1(1−α)+p2
> x1 ≥ αp2x2

p1+p2
. Then e1 = 1, t1 = t2 = x1, and θ solves

c = µ0θ
−αp2(x2 − x1).

Proof. The proof of Proposition 2 implies that e1 = 1. Then constraints (IC–1) and (IC–2)

imply t1 = t2. A comparison of constraints (IC–3) and (IC–4) shows that the former is slack,

while constraint (IC–4) must bind, for otherwise Proposition 1 would apply. This implies

t1 = t2 = x1. Finally, the zero profit condition (2) pins down the value of θ.

One can verify that when x1 = αp2x2

p1(1−α)+p2
, Propositions 1 and 3 imply the same values

for the four choice variables, while when x1 = αp2x2

p1+p2
, Propositions 2 and 3 coincide.

2.3 Adverse Selection

Formally, I assume that there are two types of workers, good and bad. A fraction 1 − ε >

p1 + p2 of workers are good and ε are bad. When a good worker contacts a firm, the realized

productivity is x1 with probability p1

1−ε
and x2 with probability p2

1−ε
; otherwise it is x0 = 0.

When a bad worker contacts a firm, the realized productivity is always equal to 0. A worker

knows her type but a firm can only observed the realized productivity. Note that from a

firm’s perspective, the probability productivity is x1 or x2 is just p1 or p2.

In this environment, suppose that in fact all other firms offered a zero payment to a

worker who produces zero output. Then any deviating firm which set t0 > 0 would attract

a positive measure of the bad workers (so θ = 0) and no good workers, making such a policy

unprofitable. Thus it is an equilibrium for all firms to set t0 = 0.

Note that without the constraint that t0 = 0 (and ignoring the adverse selection problem),

asymmetric information would not be a problem. A firm would simply set t0 = t1 = t2 and

e1 = e2 = 1, with transfers chosen at the appropriate level so as to get the (symmetric

information) optimal v-u ratio. It is straightforward to show that all the IC constraints are

satisfied in this case.

2.4 Summary

To summarize, consider the following numerical example: p1 = p2 <
1
2

and α = 1
2
. Then there

are three regions in the parameter space. In region I, 1 > x1

x2
≥ 1

3
, the firm is unconstrained

by information problems and chooses the v-u ratio optimally. In region II, 1
3
> x1

x2
≥ 1

4
, the

firm is constrained by information problems so t1 = t2 = x1, but still promises to employ a
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worker in a low productivity match with probability 1. In region III, 1
4
> x1

x2
≥ 0, the firm

uses the public randomization device in low productivity matches and pays a higher wage

to workers in high productivity matches.

3 Continuum of Productivity Realizations

This section generalizes the previous model in two directions. First, I assume that the

matching function µ(θ) is strictly concave and satisfies µ(θ) < min{1, θ} and in particular

µ(0) = 0. This generalizes the Cobb-Douglas matching function from the previous section.

Second, and more importantly, I assume that the realized level of productivity x is a random

variable with cumulative distribution F (x) and convex support [0, x̄], where x̄ ≤ ∞. I assume

F (x̄) = 1 but allow F (0) > 0, in which case I assume there is a positive probability that a

match is unproductive. Finally, it is convenient for the exposition of the results to assume

that µ(θ) is continuously differentiable with

µ′(0) >
c∫ x̄

0
xdF (x)

> lim
θ→∞

µ′(θ).

One might expect that with a continuum of different productivity levels, an optimal contract

would potentially involve a continuum of different wages and employment probabilities. I will

show that, perhaps surprisingly, the characterization of equilibrium is, if anything, simpler

in this environment.

I represent a competitive search equilibrium with asymmetric information as a con-

strained optimization problem. I focus on the dual problem, in which the worker chooses

the v-u ratio θ, transfer t(x), and employment probabilities e(x) in each type of match:

V = max
θ,t,e

µ(θ)

∫ x̄

0

t(x)dF (x)

subject to c =
µ(θ)

θ

∫ x̄

0

(
xe(x) − t(x)

)
dF (x)

xe(x) − t(x) ≥ xe(y) − t(y) for all {x, y} ∈ [0, x̄]2

t(0) = 0

e(x) ∈ [0, 1] for all x ∈ [0, x̄].

The worker attempts to maximize her expected utility, but must ensure that the firm earns
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zero expected profits, the firm truthfully reveals the productivity, and the transfer to unpro-

ductive workers is zero. The last assumption again represents an unmodelled moral hazard

problem.

3.1 Symmetric Information Benchmark

Before characterizing the equilibrium with asymmetric information, it is worth stepping back

to describe a competitive search equilibrium with symmetric information, i.e. the solution

to the constrained optimization problem without the set of incentive constraints. Eliminate

t(x) from the objective function using the zero profit constraint to get

V = max
θ,e

µ(θ)

∫ x̄

0

xe(x)dF (x) − cθ

e(x) ∈ [0, 1] for all x ∈ [0, x̄].

The solution is clearly to set e(x) = 1 for all x > 0, and then choose a v-u ratio that satisfies

the necessary and sufficient first order condition

µ′(θ)
∫ x̄

0

xdF (x) = c. (4)

Given the assumptions on µ, this defines a unique v-u ratio θs ∈ (0,∞).

It is straightforward to prove that such an allocation is not incentive compatible. If

e(x) = 1 for all x, the incentive constraint xe(x) − t(x) ≥ xe(y) − t(y) implies t(x) is

constant for all x. Since t(0) = 0, t(x) = 0 as well. Then the free entry condition implies
µ(θs)

θs

∫ x̄

0
xdF (x) = c, which is consistent with the first order condition (4) if and only if

µ(θs) = θsµ′(θs). But strict concavity of µ precludes this possibility at any positive value of

θs.

3.2 Characterization of Incentive Compatibility

One instead must characterize the competitive search equilibrium with asymmetric informa-

tion directly. The problem appears complicated, since there is a two-dimensional continuum

of incentive constraints. Fortunately, it is possible to simplify the problem considerably by

providing a simple characterization of incentive compatible transfer schemes using something

like a ‘first order approach’ (Mirrlees 1971, Laffont and Maskin 1980, Rogerson 1985, Milgrom

and Segal 2002):
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Lemma 2. The following two conditions are identical:

A: xe(x) − t(x) ≥ xe(y) − t(y) for all {x, y} ∈ [0, x̄]2 and t(0) = 0

B: t(x) = xe(x) −
∫ x

0

e(y)dy and e(x) is a nondecreasing function.

Proof. I first prove that condition A implies condition B. If xe(x)−t(x) ≥ xe(y)−t(y) for all

x and y, then this true in particular for y close to x. This implies the generalized first order

condition dt(y) = yde(y). Integrate this condition using the boundary condition t(0) = 0 to

get ∫ x

0

dt(y) =

∫ x

0

yde(y) ⇒ t(x) = xe(x) −
∫ x

0

e(y)dy.

This is half of condition B. To prove monotonicity of the employment probability, sum the

incentive compatibility constraints {x, y} and {y, x}:

xe(x) − t(x) + ye(y) − t(y) ≥ xe(y) − t(y) + ye(x) − t(x) ⇒ (
e(x) − e(y)

)
(x− y) ≥ 0.

This proves e(x) ≥ e(y) when x > y.

Now I prove that condition B implies condition A. Under the proposed transfer scheme,

for any x < y,

xe(x) − t(x) − xe(y) + t(y) =

∫ y

x

(
e(y) − e(x′)

)
dx′.

The integrand, and hence the integral, is nonnegative because e is nondecreasing, proving

xe(x) − t(x) ≥ xe(y) − t(y). The proof when x > y is symmetric. Finally, verify directly

that t(0) = 0.

I use Lemma 2 to eliminate the transfer payment from the representation of competitive

search equilibrium:

V = max
θ,e

µ(θ)

∫ x̄

0

(
xe(x) −

∫ x

0

e(y)dy

)
dF (x)

subject to c =
µ(θ)

θ

∫ x̄

0

(∫ x

0

e(y)dy

)
dF (x)

0 ≤ e(x) ≤ e(y) ≤ 1 for all x < y.
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Further simplify using integration-by-parts,
∫ x̄

0

(∫ x

0
e(y)dy

)
dF (x) =

∫ x̄

0
e(x)(1 − F (x))dx:

V = max
θ,e

µ(θ)

(∫ x̄

0

xe(x)dF (x) −
∫ x̄

0

e(x)(1 − F (x))dx

)
(5)

subject to c =
µ(θ)

θ

∫ x̄

0

e(x)(1 − F (x))dx (6)

0 ≤ e(x) ≤ e(y) ≤ 1 for all x < y (7)

That is, a tuple {θ, t, e} is a competitive search equilibrium with asymmetric information if

and only if {θ, e} maximizes (5) subject to (6) and (7) and t(x) = xe(x)−∫ x

0
e(y)dy for all x.

This is a much simpler representation of equilibrium, and is relatively easily manipulated.

3.3 The Lagrangian

Temporarily ignore the monotonicity constraint (7). The problem of maximizing (5) subject

to (6) can be represented as a Lagrangian with multiplier ψθ > 0 on the zero profit condition:

L(θ, e, ψ) = µ(θ)

(∫ x̄

0

xe(x)dF (x) + (ψ − 1)

∫ x̄

0

e(x)(1 − F (x))dx

)
− ψθc.

One may equivalently view this as maximizing a weighted sum of a worker’s expected util-

ity µ(θ)
(∫ x̄

0
xe(x)dF (x) − ∫ x̄

0
e(x)(1 − F (x))dx

)
and firm’s expected profit µ(θ)

θ

∫ x̄

0
e(x)(1 −

F (x))dx − c, with Pareto weights 1 and ψθ. By varying ψ, one traces out the Pareto fron-

tier. Competitive search equilibrium picks out a particular point on the Pareto frontier, with

firms’ expected profit equal to zero.

To solve the Lagrangian, define

φ(x) ≡ x(1 − F (x)) + ψ

∫ x̄

x

(y − x)dF (y). (8)

The Lagrangian may be expressed as

L(θ, e, ψ) = −µ(θ)

∫ x̄

0

e(x)dφ(x) − ψθc.

Note that I may assume without loss of generality that e(0) = 0, since this relaxes the

monotonicity constraint on the employment probability function without affecting the value
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of the objective function. Then using integration-by-parts on the previous expression gives

L(θ, e, ψ) = µ(θ)

∫ x̄

0

φ(x)de(x) − ψθc. (9)

A competitive search equilibrium with asymmetric information is simply a v-u ratio θ and a

nondecreasing employment probability function e(x) that maximizes this function, with the

transfers determined via t(x) = xe(x) − ∫ x

0
e(y)dy and the multiplier ψ set to ensure firms

earn zero profits.

A cursory examination of (9) reveals some key properties of a competitive search equi-

librium with asymmetric information. First, monotonicity of e(x) implies de(x) ≥ 0 only if

x ∈ arg maxy φ(y). Second, e(x̄) = 1 if maxy φ(y) > 0. And third, assuming maxy φ(y) > 0,

the v-u ratio θ is chosen to maximize µ(θ) maxx φ(x) − ψθc.4 A characterization of φ is

therefore critical to a characterization of competitive search equilibrium.

3.4 Threshold Solution to the Employment Probability Function

Under a standard regularity condition, the characterization of the employment probability

function is particularly easy because the critical function φ(x) is single-peaked for any value

of ψ. Matches are formed if and only if productivity exceeds an endogenous threshold x∗.

Proposition 4. Assume F is differentiable and h(x) ≡ xF ′(x)
1−F (x)

is a nondecreasing func-

tion. In a competitive search equilibrium with asymmetric information, the v-u ratio θ and

employment threshold x∗ satisfy

V = max
θ,x∗∈[0,x̄]

µ(θ)x∗(1 − F (x∗)) (10)

subject to c =
µ(θ)

θ

∫ x̄

x∗
(x− x∗)dF (x) (11)

and the employment probability function e(x) and transfer function t(x) satisfy

e(x) =

{
1

0
and t(x) =

{
x∗

0
if

x ∈ (x∗, x̄)

x ∈ (0, x∗)
. (12)

Proof. For any value of ψ, define x∗ such that h(x∗) = 1 − ψ. (If h(x) > 1 − ψ for all x, set

4If maxy φ(y) ≤ 0, θ is chosen to maximize −ψθc, and so is either zero or infinite depending on whether
ψ is positive or negative.
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x∗ = 0, and if h(x) < 1−ψ for all x, set x∗ = x̄.) Observe that φ(x) is increasing when x < x∗,

(1 − ψ)(1 − F (x)) − xF ′(x) > 0, and decreasing when x > x∗. Therefore φ(x) has a unique

maximum, x∗, so e(x) = 0 when x < x∗ and e(x) = 1 when x > x∗. The value of t(x) follows

immediately from Lemma 2, while the representation of the threshold (10)–(11) comes from

simplifying the original optimization problem (5)–(7) using the threshold characterization.

In particular, a matched worker earns x∗ if productivity exceeds this threshold and the firm

earns the residual profit x− x∗ in the same set of events.

The condition that h(x) is nondecreasing is related to some more familiar conditions.

First, the condition is equivalent to the requirement that the elasticity of 1−F (x) with respect

to x must be decreasing. A stronger but more familiar requirement is the monotone hazard

rate condition that F ′(x)
1−F (x)

is nondecreasing. This last condition is identical to the requirement

that 1−F (x) is log-concave. It is satisfied by a broad class of standard distributions, including

any distribution with a nondecreasing density p (e.g. the uniform), the normal distribution

truncated at zero, the log normal distribution, and the exponential distribution.

Although one typically cannot proceed further than the characterization of competi-

tive search equilibrium in equations (10)–(11), solving for θ and x∗ is easy with particu-

lar functional forms. An important special case is µ(θ) = µ0θ
1−α, with µ0 is sufficiently

small so that µ(θ) < min{θ, 1} in the relevant parameter range. Then one can eliminate θ

from the objective function using the constraint and show that the employment threshold

x∗ = arg maxxG(x), where

G(x) ≡ α log
(
x(1 − F (x))

)
+ (1 − α) log

(∫ x̄

x

(y − x)dF (y)

)
.

This is a geometric weighted average of the surplus that a worker gets from a meeting, the

reservation productivity level when output exceeds that level, x(1 − F (x)) and the surplus

that a firm gets from a meeting, output y in excess of the reservation productivity level x,∫ x̄

x
(y−x)dF (y). The weights correspond to the elasticity of the total matching rate µ0u

αv1−α

with respect to unemployment and vacancies, respectively.

G(x) is a single-peaked function when h(x) is nondecreasing. Observe first that H(x) ≡
1 + x(1−F (x))∫ x̄

x
(1−F (y))dy

inherits the monotonicity of h(x) ≡ xF ′(x)
1−F (x)

. To prove this, show by differ-

entiation that H ′(x) � 0 if and only if H(x) � h(x). Now suppose H(x) < h(x) for some

x < x̄. Then H ′(x) < 0 and h(x) ≥ 0, so H(x′) < h(x′) and H ′(x′) < 0 for all x′ > x. But

using L’Hôpital’s rule, limx→x̄H(x)/h(x) = 1, a contradiction. Therefore H(x) ≥ h(x) and
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H ′(x) ≥ 0 for all x < x̄. Next, differentiate G(x) to show xG′(x) = 1− (1−α)H(x)−αh(x),
a non-increasing function, which implies G is single-peaked. After finding the peak of the

peak of G, θ is easily computed using the zero profit condition (11).

3.5 General Solution to the Employment Probability Function

Even when h(x) is not monotonic, it is possible to provide a precise characterization of the

equilibrium.

Proposition 5. Assume the distribution function F (x) is generic. In a competitive search

equilibrium with asymmetric information, the employment probability function e(x) is a step

function with at most two discontinuities. If the employment probability function e(x) has one

discontinuity, the v-u ratio θ and threshold x∗ solve (10)–(11) and the employment probability

function e(x) and transfer function t(x) satisfy (12).

If there are two discontinuities and F is continuously differentiable, the thresholds x∗1 and

x∗2 solve

x∗1F
′(x∗1)

1 − F (x∗1)
=

x∗2F
′(x∗2)

1 − F (x∗2)
=

∫ x∗
2

x∗
1
xdF (x)∫ x∗

2

x∗
1
(1 − F (x))dx

, (13)

the v-u ratio θ and employment probability e∗ solve

V = max
θ,e∗∈[0,1]

µ(θ)
(
e∗x∗1

(
1 − F (x∗1)

)
+ (1 − e∗)x∗2

(
1 − F (x∗2)

))
(14)

subject to θc = µ(θ)

(
e∗
∫ x̄

x∗
1

(x− x∗1)dF (x) + (1 − e∗)
∫ x̄

x∗
2

(x− x∗2)dF (x)

)
(15)

and the employment probability function e(x) and transfer function t(x) satisfy

e(x) =

⎧⎪⎨
⎪⎩

1

e∗

0

and t(x) =

⎧⎪⎨
⎪⎩

e∗x∗1 + (1 − e∗)x∗2
e∗x∗1
0

if

x ∈ (x∗2, x̄)

x ∈ (x∗1, x
∗
2)

x ∈ (0, x∗1)

.

Proof. The conclusion that generically there are at most two discontinuities follows from the

characterization of the Lagrangian (9). In particular, de(x) > 0 only if x ∈ arg maxy φ(y),

where φ is defined in (8). There is only a single endogenous variable, the multiplier ψ, in

the definition of φ, so for generic functions F and arbitrary (not necessarily generic) values

of ψ, the function φ has at most two maxima. The characterization of the case of a single
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discontinuity follows the proof of Proposition 4.

Next suppose there are two discontinuities and F is continuously differentiable. At any

x∗ ∈ arg maxφ(x), the first order conditions indicate that φ′(x∗) = 0, i.e. x∗F ′(x∗) = (1 −
ψ)(1 − F (x∗)). Moreover, if arg maxφ(x) is not a singleton, it contains two points x∗1 < x∗2
with

0 = φ(x∗2) − φ(x∗1)

= x∗2(1 − F (x∗2)) − x∗1(1 − F (x∗1)) − ψ

∫ x∗
2

x∗
1

(1 − F (x))dx

= −
∫ x∗

2

x∗
1

xdF (x) + (1 − ψ)

∫ x∗
2

x∗
1

(1 − F (x))dx,

where the second equality uses the definition of φ and the third uses integration-by-parts.

This gives three conditions for x∗1, x
∗
2, and ψ, which can be written as

1 − ψ =
x∗1F

′(x∗1)
1 − F (x∗1)

=
x∗2F

′(x∗2)
1 − F (x∗2)

=

∫ x∗
2

x∗
1
xdF (x)∫ x∗

2

x∗
1
(1 − F (x))dx

.

Finally, the transfer function t(x) is determined from Lemma 2. The problem describing the

choice of θ and e∗ (conditional on x∗1 and x∗2) comes from simplifying the original optimization

problem (5)–(7) using the characterization given above.

When F is not continuously differentiable, the definition of x∗1 and x∗2 must be appro-

priately generalized. Of course, even in the case where F is continuously differentiable, it

is possible that multiple pairs of points satisfy the restriction (13), in which case any such

pairs are potentially part of an equilibrium.

It is worth noting a simple way of implementing this contract. A firm commits that when

it contacts a worker, it will randomly set a wage, equal to x∗1 with probability e∗ and x∗2 with

probability 1 − e∗. The firm also reserves the right to decide whether to hire the worker

at the chosen wage. If realized productivity x < x∗1, the worker is never hired and is paid

nothing. If x ∈ (x∗1, x
∗
2), the worker is hired if the firm chose the low wage, in which event it

is paid x∗1, giving an employment probability of e∗ and an expected transfer of e∗x∗1. Finally,

if x > x∗2, the worker is hired in either event, giving an expected transfer of e∗x∗1 +(1−e∗)x∗2.
This recollects the equilibrium of Curtis and Wright (2003), in which a fraction e∗ firms pay

the low wage x∗1 and the remaining firms pay the high wage x∗2; in the competitive search
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model, each firm randomly selects the wage.

Once again, it is relatively straightforward to solve for θ and e∗ when µ(θ) = µ0θ
1−α. Use

the zero profit condition to eliminate θ from the objective function, yielding an unconstrained

optimization problem for the choice of the employment probability in the intermediate range:

e∗ maximizes

α log
(
e∗x∗1

(
1 − F (x∗1)

)
+ (1 − e∗)x∗2

(
1 − F (x∗2)

))

+ (1 − α) log

(
e∗
∫ x̄

x∗
1

(x− x∗1)dF (x) + (1 − e∗)
∫ x̄

x∗
2

(x− x∗2)dF (x)

)
.

This again can be interpreted as a geometric average of the workers’ and firms’ surplus from

matching. It is possible to solve recursively first for e∗ and then for the v-u ratio θ from the

zero profit condition (15). If this problem admits a solution with e∗ ∈ (0, 1), one must then

compare the value using public randomization—maximization of (14) subject to (15)—to

the value obtained without public randomization—maximization of (10) subject to (11).

3.6 An Example with Public Randomization

I verify by example that mixed strategies may be used in a competitive search equilibrium

with asymmetric information even when the type distribution is atomless. Consider the

density function F ′(x) = 0.1 + 3x(x− 1)2(2− x) with support [0, 2], a quartic equation with

local minima at x = 0, 1, and 2 and maxima at 1±1/
√

2. The critical function h(x) = xF ′(x)
1−F (x)

is increasing for x < 0.550 and x > 0.979 but is decreasing in the intermediate interval.

This makes it possible to find values of x∗1 and x∗2 satisfying the required pair of equations,

x∗1 = 0.349 and x∗2 = 1.142. I therefore look for an equilibrium in which e(x) = e∗ ∈ (0, 1)

when x lies in this intermediate region.

To proceed further, I must assume a functional form for the matching function, µ(θ) =

µ0θ
1/2. Then maximizing (14) subject to (15) indicates that e∗ = 0.723, regardless of the

cost of a vacancy and the matching function constant, yielding the worker value 0.194µ2
0/c.

5

Alternatively, if the firm considers not using a public randomization device, it may instead

choose a single employment threshold x∗. Then regardless of c and µ0, the (constrained)

optimal threshold is x∗ = 0.457, yielding value 0.190µ2
0/c, 2.1 percent less than that feasible

with public randomization. I conclude that there is public randomization in any competitive

5In addition, θ = 0.311µ2
0/c

2, so µ(θ) < min{θ, 1} if µ2
0 < 1.792c < 1. With symmetric information, the

v-u ratio is lower, θ = 0.25µ2
0/c

2, and the worker’s value is higher, 0.25µ2
0/c.
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search equilibrium with asymmetric information with these density and matching functions.

3.7 The Effect of Asymmetric Information

This paper has thus far provided two examples, one with two types of jobs and one with a

continuum of jobs. In both, asymmetric information weakly increases the v-u ratio compared

to the symmetric information benchmark. This section proves that this result holds more

generally.

Proposition 6. Let θa denote the v-u ratio in a competitive search equilibrium with asym-

metric information and θs denote the v-u ratio in a competitive search equilibrium with

symmetric information. Then θa > θs.

Proof. Equation (4) implies that µ′(θs)
∫ x̄

0
xdF (x) = c, while the Lagrangian (9) implies θa

satisfies

µ′(θa) max
x

φ(x) = ψc.

Since for any fixed ψ, φ(x) > 0 at x sufficiently near x̄, the left hand side is positive, which

implies ψ > 0. Then since µ is concave, the result follows if maxx φ(x) > ψ
∫ x̄

0
xdF (x). But

equation (8) implies φ(0) = ψ
∫ x̄

0
xdF (x). Moreover, 0 ∈ arg maxφ(0) only if the competi-

tive search equilibrium with symmetric information satisfies the information constraints, a

possibility that I have already precluded.

To provide some intuition for this result, note that setting θ = θs and e(x) = 1 for all x

violates the zero profit constraint (6):

µ(θs)

θs

∫ x̄

0

(1 − F (x))dx =
µ(θs)

θs

∫ x̄

0

xdF (x) > c,

since concavity of µ implies µ(θ)
θ

> µ′(θ). Restoring zero profits therefore requires either

reducing e(x) for some x or raising θ so as to lower the rate that firms contact workers.

Optimality dictates undertaking both actions.

4 Dynamic Model

This section develops a dynamic extension to the model in the continuous type model. Time

is continuous and all agents are infinitely lived and discount future income at rate r. At
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any point in time, a firm may open a vacancy and advertise an employment contract at

a flow cost c. Unemployed workers observe all the advertised contracts and direct their

search accordingly. I assume that the flow matching rate µ(θ) is increasing and concave with

µ(0) = 0. When a worker and firm meet, the firm observes the match specific productivity

realization but the worker does not. Match productivity is constant, but the job ends

exogenously at rate s.

As a preliminary step, note that a risk-neutral worker and firm care only about the ex-

pected present value of transfers conditional on a particular productivity announcement. I

therefore assume without loss of generality that an employment contract has the following

form: the firm announces the productivity realization x, hires the worker with probability

e(x), gives the worker a lump-sum transfer t(x), and thereafter pays the worker her reserva-

tion wage rV while the worker is employed, where V is the expected present value of income

for an unemployed worker. With this structure, it is possible to represent a competitive

search equilibrium with asymmetric information as

rV = max
θ,t,e

µ(θ)

∫ x̄

0

t(x)dF (x)

subject to c =
µ(θ)

θ

∫ x̄

0

(
e(x)

x− rV

r + s
− t(x)

)
dF (x)

e(x)
x− rV

r + s
− t(x) ≥ e(y)

x− rV

r + s
− t(y) for all {x, y} ∈ [0, x̄]2

t(0) = 0

e(x) ∈ [0, 1] for all x ∈ [0, x̄]

The worker chooses the v-u ratio, lump-sum transfers, and employment probabilities in order

to maximize her expected utility, where her flow utility is the rate at which she contacts a

firm µ(θ) times the expected capital gain
∫ x̄

0
t(x)dF (x). The firm must earn zero profits from

its vacancy, so the flow cost of a vacancy c equals the product of the rate at which a firm

contacts a worker µ(θ)/θ and the expected capital gain: if the firm truthfully announces that

productivity is x, it hires the worker with probability e(x) giving present value x−rV
r+s

, but it

must pay the transfer t(x). Finally, the worker’s choice must satisfy the incentive constraint,

so a firm prefers to truthfully announce that productivity is x rather than report y, and it

must not insist on any transfers when the firm announces that productivity is zero.

With symmetric information, one can again eliminate the transfer function using the zero
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profit constraint to get

rV = max
θ,e

µ(θ)

∫ x̄

0

e(x)
x− rV

r + s
dF (x) − θc.

Clearly e(x) = 1 if x > rV and 0 otherwise. Equivalently, the v-u ratio θ and employment

threshold and flow value of unemployment x∗ = rV must satisfy

x∗ = max
θ

µ(θ)

r + s

∫ x̄

x∗
(x− x∗)dF (x) − θc.

But such an allocation will generally violate the incentive constraints. With asymmetric

information, it is possible to replicate the proof of Lemma 2 to show that

Lemma 3. The following two conditions are identical:

A: e(x)
x − rV

r + s
− t(x) ≥ e(y)

x− rV

r + s
− t(y) for all {x, y} ∈ [0, x̄]2 and t(0) = 0

B: t(x) =
e(x)(x− rV ) − ∫ x

0
e(y)dy

r + s
and e(x) is a nondecreasing function.

Substituting this into the constrained optimization problem and using the standard

integration-by-parts tricks gives

(r + s)rV = max
θ,e

µ(θ)

(∫ x̄

0

(x− rV )e(x)dF (x) −
∫ x̄

0

e(x)(1 − F (x))dx

)

subject to θ(r + s)c = µ(θ)

∫ x̄

0

e(x)(1 − F (x))dx

0 ≤ e(x) ≤ e(y) ≤ 1 for all 0 ≤ x ≤ y ≤ x̄

In particular, if we ignore the monotonicity constraint, we may represent this as a Lagrangian

by placing the multiplier ψ on the constraint:

L(θ, e, ψ) = µ(θ)

(∫ x̄

0

(x− rV )e(x)dF (x) + (ψ − 1)

∫ x̄

0

e(x)(1 − F (x))dx

)
− ψθ(r + s)c

Now assume F is differentiable. If h(x) = xF ′(x)
1−F (x)

is nondecreasing then (x−rV )F ′(x)
1−F (x)

is non-

decreasing in x as well for any x ≥ rV ≥ 0. This implies there is an x∗ ≥ rV such that

(x−rV )F ′(x) ≤ (1−ψ)(1−F (x)) if x < x∗ and (x−rV )F ′(x) ≥ (1−ψ)(1−F (x)) if x > x∗.

Optimality then requires using an employment threshold of x∗. Substituting the threshold
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rule back into the previous problem and solving the objective function for V implies that a

competitive search equilibrium with asymmetric information is a tuple {V, θ, x∗} solving

rV = max
θ,x∗

µ(θ)x∗(1 − F (x∗))
r + s+ µ(θ)(1 − F (x∗))

subject to c =
µ(θ)

θ(r + s)

∫ x̄

x∗
(x− x∗)dF (x)

a simple static optimization problem. It is easy to verify that x∗ > rV ,6 so asymmetric

information forces the worker and firm to waste some potential gains from trade. The case

when h(x) is not monotone is similarly unaffected.

An interesting issue that arises in the dynamic model is an alternative interpretation of

the employment probability e(x). All that matters is that the firm only enjoy a fraction e(x)

of the potential gains from trade (x−rV )/(r+s). This can be achieved through probabilistic

hiring, but it can also be achieved through a premature layoff. That is, if a firm commits to

hire a worker for at most T periods, the match surplus falls to

∫ T

0

e−(r+s)τ (x− rV )dτ =
x− rV

r + s

(
1 − e−(r+s)T

)
.

Then by setting T (x) = − log(1−e(x))
r+s

, the contract achieves the desired outcome in a deter-

ministic and verifiable fashion.
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